
Day #11  

 

1 

Day #11 (B) 
Excursion 4 Tour IV: Objectivity and Model Checking 

 
 4.8 All Models are False (SIST p. 296) 

 
... it does not seem helpful just to say that all models are 
wrong. The very word model implies simplification and 
idealization. ... The construction of idealized representations 
that capture important stable aspects of such systems is, 
however, a vital part of general scientific analysis. (Cox 
1995, p. 456) 
 
A popular slogan in statistics and elsewhere is “all models 

are false!”  Is this true? 
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Clearly what is meant involves some assertion or hypothesis 
about the model 
• that it correctly or incorrectly represents some phenomenon 

in some respect or to some degree.  
 
Such assertions clearly can be true.  
 
To declare, “all models are false” by dint of their being 
idealizations or approximations, is to stick us with one of those 
“all flesh is grass” trivializations (4.1).  
• So understood, all statistical models are false, but we have 

learned nothing about how they may be used to infer true 
claims about problems of interest.   

 
The error statistician’s goal in using approximate statistical 
models is largely to learn where they break down 
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Their strict falsity is a given. (So why assign it a probability?) 
 
Probable vs approximate: Assigning a probability to a 
statistical model is very different from asserting it is 
approximately correct or adequate for solving a problem.  
 
Two main grounds for the “all models are false” charge (p. 297):  

1. The statistical inference refers to an idealized and partial 
representation of a theory or process.  

2. The probability model, to which a statistical inference 
refers, is at most an idealized and partial representation of 
the actual data generating source.  

• Neither precludes the use of these false models to find out 
true things, or to correctly solve problems.  

• On the contrary, it would be impossible to learn about the 
world if we did not deliberately falsify and simplify.  
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Adequacy for a Problem. George Box, to whom the “all 
models are wrong” is often attributed, goes on to add “But some 
are useful” (1979, p. 2).  
I’ll go further: all models are false, no useful models are true.  
 
Let’s say a statistical model is useful by being adequate for a 
problem, meaning 
  
• it may be used to find true or approximately true solutions to it.  
• Statistical hypotheses may be seen as conjectured solutions 

to a problem.  
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A statistical model is adequate for a problem of statistical 
inference (a subset of uses of statistical models): 
• if it enables controlling and assessing if purported solutions 

are well or poorly probed and to what degree.  
• Through approximate models, we learn about the “important 

stable aspects” or systematic patterns when we are in the 
land of phenomena that exhibit statistical variability.  

 
When I speak of ruling out mistaken interpretations of data, I 
include mistakes about theoretical and causal claims.  
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Testing Assumptions is Crucial (p. 298)  

“the ability of the frequentist paradigm to offer a battery of 
simple significance tests for model checking and possible 
improvement is an important part of its ability to supply 
objective tools for learning.” (Cox and Mayo 2010, p.285). 

 
The severe tester is a worrywart, which makes her an activist 
• deliberately reining in some portion of a problem so that it’s 

sufficiently like one she knows how to check.  
• assumptions under test are intended to arise only as i-

assumptions.  
• They’re assumptions for drawing out consequences, for 

possible falsification.  
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“In principle, the information in the data is split into two parts, 
one to assess the unknown parameters of interest and the other 
for model criticism” (Cox 2006 p. 198).   
 
Number of successes in n Bernoulli trials is a sufficient statistic,  
• has a binomial sampling distribution determined by θ, the 

probability of success on each trial.  
• If the model is appropriate then any permutation of the r 

successes in n trials has a known probability.  
• Because this conditional distribution (X given s) is totally 

known, it can be used to assess if the model is violated.  
• The key is to look at residuals: the difference between each 

observed value and what is expected under the model. (We 
illustrate with the runs test in 4.11.)  

• It is also characteristic of error statistical methods to be 
relatively robust to violation.   
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This Tour continues our journey into solving the problem of 
induction (2.7). 
(SIST p. 299) 
 
Exhibit (xii). Pest control. Neyman turns from the canonical 
examples of real random experiments–of coin tossing and 
roulette wheels–to illustrate how “the abstract theory of 
probability… may be, and actually is, applied to solve problems 
of practice importance” such as pest control!   
 
• Given the lack of human control here, he expects the 

mechanism to be complicated.  
• The first attempt to model the variation in larvae hatched 

from moth eggs, while plausible, is way off.  
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“[I]f we attempt to treat the distribution of larvae from the point 
of view of [the Poisson distribution], we would have to assume 
that each larva is placed on the field independently of the 
others. This basic assumption was flatly contradicted by the 
life of larvae as described by Dr. Beall. Larvae develop from 
eggs laid by moths. It is plausible to assume that, when a 
moth feels like laying eggs, it does not make any special 
choice between sections of a field planted with the same crop 
and reasonably uniform in other respects.”  (1952, p. 34). 

Wrong 

• Larvae expert, Dr. Beall, explains why: At each “sitting” a 
moth lays a batch of eggs.  

• “After hatching …the larvae begin to look for food and crawl 
around” but given their slow movement “if one larva is found, 
then it is likely that the plot will contain more than one from 
the same cluster (ibid.).”  



Day #11  

 

10 

• An independence assumption fails. 
  
• The misfit with the Poisson model leads Neyman to arrive at 

a completely novel distribution: he called it the Type A 
distribution (a “contagious” distribution.) 

 
• Neyman knows that even the Type A distribution is strictly 

inadequate, and a far more complex distribution would be 
required for answering certain questions. 

  
• Yet it suffices to show why the first attempt failed, and it’s 

adequate to solving his immediate problem in pest control. 
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Souvenir(U) Severity in Terms of Problem-solving. 

The aim of inquiry is finding things out. To find things out we 
need to solve problems that arise due to limited, partial, noisy 
and error prone information. Statistical models are at best 
approximations of aspects the data generating process. 
Reasserting this fact is not informative about the case at hand. 
These models work because they need only capture rather 
coarse properties of the phenomena: the error probabilities of 
the test method are approximately and conservatively related to 
actual ones. A problem beset by variability is turned into one 
where the variability is known at least approximately. Far from 
wanting true (or even “truer”) models, we need models whose 
deliberate falsity enables finding things out. 
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 Statistical methods are useful for testing solutions to 
problems when this capability/incapability is captured by the 
relative frequency with which the method avoids 
misinterpretations. 
 If you want to avoid speaking of ‘truth” you can put the 
severity requirement in terms of solving a problem: A claim H 
asserts a proposed solution to an inferential problem is 
adequate in some respects.  
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George Box (1983) “An Apology for Ecumenism in Statistics.” 
 

4.9 For Model-checking, They Come Back to Significance 
Tests 

Why can’t all criticism be done using Bayes posterior 
analysis...? The difficulty with this approach is that by 
supposing all possible sets of assumptions are known a 
priori, it discredits the possibility of new discovery. But new 
discovery is, after all, the most important object of the 
scientific process (Box, G.E.P., 1983 p. 73). 

 
• Box does not view “induction,” as probabilism in the form of 

probabilistic updating (posterior probabilism), or any other 
• Gelman is a Bayesian who follows in this spirit to some 

extent 



Day #11  

 

14 

Rather, it requires critically testing whether a model Mi is 
“consonant” with data, and this, he argues, demands frequentist 
significance testing.  
• Our ability “to find patterns in discrepancies Mi – yd between 

the data and what might be expected if some tentative model 
were true is of great importance in the search for 
explanations of data and of discrepant events” (Box 1983, p. 
57).  

• But the dangers of apophenia raise their head.p. 301) 
“This is the object of diagnostic checks and tests of fit which, 
I will argue, require frequentist theory [of] significance tests 
for their formal justification”. (ibid.) 
 

Once you have inductively arrived at an appropriate model, the 
move, on his view, “is entirely deductive and will be called 
estimation.” (ibid., p.56).  
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• The deductive portion, he thinks, can be Bayesian but the 
inductive portion requires frequentist significance tests, and 
statistical inference depends on an iteration between the 
two.   

 “A model is only capable of being ‘proved’ in the biblical 
sense of being put to the test.” (Box and Jenkins 1976, p. 286).  
 
• One might imagine A1, A2,….,Ak being alternative 

assumptions and then computing Pr(Ai|y).  
• Box denies this is plausible: to assume we start out with all 

models precludes the "something else we haven’t thought 
of" so vital to science (p. 73).  

• Typically Bayesians try to deal with this by computing a 
Bayesian catchall “everything else.”  
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Savage recommends reserving a low prior for the catchall 
(1962), but Box worries that this may allow you to assign model 
Mi a high posterior probability relative to the other models 
considered.  
• “In practice this would seem of little comfort” (ibid., pp. 73-4). 

For suppose of the three models under considerations the 
posteriors are .001, .001, .998, but unknown to the 
investigator a fourth model is a thousand times more 
probable than even the most probable one considered so 
far?   

• So he turns to frequentist tests for model checking.  
• Does it violate the likelihood principle (LP)?  
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The likelihood principle holds, of course, for the estimation 
aspect of inference in which the model is temporarily 
assumed true. However it is inapplicable to the criticism 
process in which the model is regarded as in doubt....In the 
criticism phase we are considering whether, given A, the 
sample yd is likely to have occurred at all. To do this 
we must consider it in relation to the other samples that 
could have occurred but did not. (Box 1983, pp. 74-75) 

 
• In conducting secondary inferences (about assumptions), 

Box is saying, the LP must be violated, or simply doesn’t 
apply.  
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You can run a simple Fisherian significance test–the null 
asserting the model assumption A holds–and reject it if the 
observed result is improbably far from what A predicts.  
 Box gives the example of stopping rules which don’t alter the 
posterior distribution. 
He considers 4 Bernoulli trials: <S,S,F,S>.  
• The same string could have come about if n = 4 was fixed in 

advance (Binomial trials),  
• or if the plan was to sample until the third success is 

observed, (Negative Binomial trials),  
• The string enters the likelihood ratio the same way 

(4
3
)θ3(1 − θ) and(3

2
)θ3(1 − θ) respectively: the coefficients 

cancel in the ratio  
• Box contends, this LP violation is altogether reasonable. “In 

the criticism phase we are considering whether, given A, the 
sample is likely to have occurred at all” (p. 75).  



Day #11  

 

19 

  
My question is: How is this secondary inference qualified? 
Probabilists are supposed to qualify uncertain claims with 
probability (e.g., with posterior probabilities or comparisons of 
posteriors).  
• Say you have carried out Box’s iterative moves between 

criticism and estimation, arrive at a model deemed 
adequate, and infer H: model Mi is adequate for modeling 
data x0.  

• It’s admitted to be a non-Bayesian frequentist animal, but a 
long-run behavioristic justification wouldn’t seem plausible.  
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Gelman (about Bayesians): 

 ,,,not only were they not interested in checking the fit of the 
models, they considered such checks to be illegitimate…any 
Bayesian model necessarily represented a subjective prior 
distribution and as such could never be tested. The idea of 
testing and p-values were held to be counter to the Bayesian 
philosophy. (2011, pp. 68-9)  

 
Gelman rejects traditional Bayesian forms.  
• “To me, Bayes factors correspond to a discrete view of the 

world, in which we must choose between models A, B, or C” 
(Gelman 2011, p. 74) or a weighted average of them 
(Madigan and Raftery 1994).  
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• Nor will it be a posterior. “I do not trust Bayesian induction 
over the space of models because the posterior probability 
of a continuous parameter model depends crucially on 
untestable aspects of its prior distribution” (ibid., p. 70).  

 
What is the status of the inference to the adequacy of the 
model?  
• If neither probabilified nor Bayes ratioed, it can at least be 

well or poorly tested.  
• In fact, he says: “This view corresponds closely to the error-

statistics idea of Mayo (1996).” (Gelman 2011, p. 70)  
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4.11 Philosophy of Misspecification (M-S) Testing in the 

Error Statistical Account 

I tell the story of a case Aris Spanos presented to me in 2002. 
Nonsense Regression 

Suppose that in her attempt to find a way to understand and 
predict changes in the U.S.A. population, an economist 
discovers an empirical relationship that appears to provide 
almost a ‘law-like’ fit:  
 

yt = 167+ 2xt + ût,  
                                    

where yt denotes the population of the USA (in millions), and  xt 
denotes a secret variable whose identity he would not reveal 
until the end of the analysis.  
The subscript t is time.  
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There are 33 annual data points for the period 1955-1989 (t = 1 
is 1955, t=2, 1956, etc.)  
The data can be represented as 33 pairs z0 = {(xt, yt), t = 
1,2,…33}. The coefficients 167 and 2 come from the least 
squares fit, a purely mathematical operation. 
 
This is an example of fitting a Linear Regression Model (LRM), 
which forms the backbone of most statistical models of interest: 
  

M0:      yt = β0 + β1xt + ut,  t=1,2,…,n 
 

β0 + β1xt is viewed as the systematic component (and is the 
expected value of yt), and  
ut = yt – β0 – β1xt   is the error or non-systematic component.   
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The error ut is a random variable assumed to be Normal, 
Independent and Identically Distributed (NIID) with mean 0, 
variance σ2.  
 
This is called Normal white noise.  Figure 4.2 (p. 309) shows 
what NIID looks like  
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 A Primary Statistical Question:  How good a predictor is xt? 
The goodness of fit measure of how well this model “explains” 
the variability of yt, R2=.995, an almost perfect fit.  

 
Figure 4.3 

The null hypotheses in M-S tests take the form: 
 

H0: the assumption(s) of statistical model M hold for data z, 
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as against not-H0, all of the ways one or more of its assumptions 
can fail.  
 
To reign in the testing, we consider specific departures with 
appropriate choices of test statistic d(y). 
 
Residuals are the Key 

Testing randomness: The non-parametric runs test for IID (it 
falls under “omnibus” tests in Cox’s taxonomy, Excursion 3).  
 
Look at the graph of the residuals (Fig 4.4, p. 311), where the 
“hats” are the fitted values for the coefficients: 

{𝑢̂𝑡 = yt – 𝛽̂0 − 𝛽̂1xt,    t = 1, 2, . . ., n} 
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Instead of the value of each residual, record if the difference 
between successive observations is positive (+) or negative (-).  

 
 

• Each sequence of pluses only, or minuses only, is a run.  
• We can calculate the probability of different numbers of runs 

just from the hypothesis that the assumption of randomness 
holds.  

• It serves only as an i-assumption for the check.  
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The expected number of runs, under randomness, is (2n–1)/3, 
or in our case of 35 values, 23.  
 
Test statistic: bottom p. 310 
 
The distribution of the test statistic: under IID for n ≥ 20, can be 
approximated by N(0, 1).   
 
We’re actually testing  
 
H0: E(R) = (2n–1)/3 vs. H1: E(R) ≠ (2n–1)/3. 
 
 We reject H0 iff the observed R differs sufficiently (in either 
direction) from E(R)–23. 
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Our data yields 18 runs, around 2.4 standard deviation units, 
giving a P-value of approximately .02.  

 
Arguing from severity, the data indicate non-randomness. 
  
But rejecting the null only indicates a denial of IID: either 

independence is a problem or identically distributed is a 
problem: need more specific M-S testing. 
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The Error in Fixing Error. A widely used parametric test for 
independence is the Durbin-Watson (DW) test.  
 
Here, all the assumptions of the LRM are retained, except the 
one under test, independence, which is ‘relaxed’.  
The original error term is extended to allow for the possibility 
that the errors ut are correlated with their own past, 
autocorrelated. 
 

ut  = ρut-1 + εt,   t=1,2,…,n,…,  
 

This is to propose a new overarching model: 
Proposed M1:      yt = β0 + β1xt + ut,    ut  =ρut-1 + εt,     
 

(Now εt is assumed to be a Normal, white noise process.)  
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View the D-W test as actually considering the 
conjunctions:                         

H0: {M1 & ρ=0}, vs.  H1: {M1 & ρ ≠ 0}. 
With the data in our example, the D-W test statistic rejects the 
null hypothesis (at level .02), which is standardly taken as 
grounds to adopt H1.  
 
• This is a mistake: If ρ = 0, we are back to the LRM, but ρ ≠ 0 

does not entail the particular violation of independence in H1.  
• we are in one of the “non-exhaustive” pigeonholes (“nested”) 

of Cox’s taxonomy.  
• Because the assumptions of model M1 have been retained in 

H1, this check had no chance to uncover the various other 
forms of dependence that could have been responsible for ρ 
≠  0.  
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Thus any inference to H1 lacks severity.  
 
The resulting model will appear to have corrected for 
autocorrelation but is in fact statistically inadequate.  
 
What to do instead? 
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Probabilistic Reduction: Spanos 

Spanos shows that any statistical model can be specified in 
terms of probabilistic assumptions from three broad categories: 
Distribution, Dependence, and Heterogeneity.  

  
In other words, a model emerges from selecting probabilistic 

assumptions from a menu of three groups: a choice of 
distribution; of type of dependence, if any; and a type of 
heterogeneity 

  
The LRM reflects just one of many ways of reducing the set 

of all possible models that could have given rise to the data 
z0={(xt,yt), t=1,…,n}: Normal, Independent, Identically Distributed 
(NIID).  
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As a first step, we partition the set of all possible models 
coarsely: 

 
 Distribution Dependence Heterogeneity 
LRM Normal Independent Identically 

Distributed 
Alternative 
(coarse partition) 

Non-
Normal 

Dependent Non-IID 

 
The Probabilistic Reduction (PR) approach to 

misspecification (M-S) testing weaves together threads from 
Box-Jenkins, and what some dub the LSE (London School of 
Economics) tradition.  
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Rather than give the assumptions by means of the error 
term, as is traditional, he will specify them in terms of the 
random variables (xt,yt).  

This brings out hidden assumptions, notably, assuming the 
parameters (β0, β1, σ2) do not change with t (t-homogeneity).  

Can indirectly test them from the data.  
 

Clearly, neither data series in Fig 4. 5, 4.6 look like the NIID: the 
means are increasing with time.  

 
The assumption of linear correlation between X and Y is that X 
has a mean µx, and Y has mean µy: if these are changing over 
the different samples, your estimate of correlation makes no 
sense.  
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We respecify, by adding terms of form: t, t2 , …, to the model M0 
to capture the trend  
We don’t know how far we’ll have to go: no inference yet, just 
building a statistical model whose adequacy for the primary 
statistical inference will be tested in its own right.  
Thus far: 

 Distribution Dependence Heterogeneity 
LRM Normal Independent Identically Distributed 
Alternative  ? ? Mean heterogeneity 
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What about the independence assumption?  
 
• We could check dependence if our data were ID and not 

obscured by the influence of the trending mean.   
• ‘subtract out’ the trending mean in a generic way to see what 

it would be like without it.  
(SIST p. 315) 
 
The detrended data in both figures indicate positive dependence 
or ‘memory’ in the form of cycles–Markov dependence.  
 
• So the independence assumption also looks problematic, 

explaining the autocorrelation detected by the Durbin 
Watson and runs tests.   
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• As with trends, dependence comes in different orders, 

depending on how long the memory is: modeled by adding 
terms called lags.  

 
• Our assessment so far, just on the basis of the graphical 

analysis is: 
 

 Distribution Dependence Heterogeneity 
LRM Normal Independent Identically Distributed 
Alternative  ? Markov Mean heterogeneity 

  

Finally, if we can see what the data z0={(xt, yt), t=1, 2,…, 35} 
would look like without the heterogeneity (‘detrended’) and 
without the dependence (‘dememorized’), we could get some 
ideas about the appropriateness of the Normality assumption.  
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We do this by subtracting them out “on paper” again.  

The scatter-plot of (xt, yt), shows the expected elliptical pattern 
expected for Normality (though I haven’t included a figure).  

We can organize our respecified model as an alternative to the 
LRM.  

 Distribution Dependence Heterogeneity 
LRM Normal Independent Identically Distributed 
Alternative  Normal Markov Mean heterogeneity 

  
The model derived by re-partitioning the set of all possible 
models, using the new reduction assumptions of: Normality, 
Markov and mean-heterogeneity is the Dynamic Linear 
Regression Model (DLRM).  
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Back to the Primary Statistical Inference. With a statistically 
adequate respecified model M2 we are licensed to make 
‘primary’ statistical inferences about the values of its 
parameters.  
 

• In particular, does the secret variable to help predict the 
population of the USA (yt )?  
 

• No. A test of joint significance of the coefficients of (xt, xt-1, xt-2), 
yields a p-value of .823 (using an F test).  
 

• We cannot reject the hypothesis that they are all 0, indicating 
that x contributed nothing towards predicting or explaining y.  
 
The regression between xt and yt suggested by models M0 and 
M1 turns out to be spurious or nonsense regression.  
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Drop the x variable from the model and re-estimate the 
parameters 

       
The secret variable revealed. At this point, Spanos revealed 
that: xt was the # of pair of shoes owned by his grandmother 
over the observation period!  
 
• Some of the best known spurious correlations can be 

explained by trending means.  
• For live exhibits, check out an entire website by Tyler Vigen 

devoted to exposing them!   
• I don’t know who collects statistics on the correlation 

between death by getting tangled in bed sheets and the 
consumption of cheese, but it’s exposed as nonsense by the 
trending means.  
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Souvenir (V) Two more points on M-S tests and an overview of 
Excursion 4 (p. 317) 
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